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The method of oriented manifolds [1] is used to obtain criteria for the controllability of non-linear mechanical systems of general 
form. For systems that are linear in control, the question of controllability is reduced to an analysis of the solvability of a system 
of partial differential equations of special form typical of the invariant relations method and the Lyapunov function method. 
When the number of controls is equal to the number degrees of freedom, using the example of specific systems with two degrees 
of freedom the case of confluence of the matrix of coefficients for the control vector in the equations of motion is considered. 
In the context of a discussion of the property [2] of complete controllability of classes of mechanical systems, problem formulations 
are proposed in which weakening of the property of control robustness (only variation of the constant parameters is allowed) 
enables new classes of controllable systems to be obtained. The important case, for mechanics, of the decomposability of the 
equations of motion irtto kinematic and dynamic equations is investigated and a theorem establishing the relation between the 
controllability of the linear system and its dynamical subsystem is proved. Examples are given. The problem of controlling the 
angular velocity and orientation of a rigid body by means of a single jet engine is considered, for the solution of which the method 
of oriented manifolds and the decomposition method are used. © 2000 Elsevier Science Ltd. All rights reserved. 

1. C O N T R O L L A B I L I T Y  O F  H O L O N O M I C  M E C H A N I C A L  S Y S T E M S  

T h e  m o t i o n  o f  a con t ro l lab le ,  ho lonomic ,  s c l e r o n o m o u s  mechan ica l  system with n degrees  of  f r e e d o m  
will  be  desc r ibed  iLn canonica l  H a m i l t o n  var iab les  p ,  q: 

qi o~H ~H 
='~Pi' Pi=-Oq,'+Oi" i = !  ..... n 

| 

H =La#(q)piPj +Fl (q) ,  Qi =Qi(q,P, u) 
2 

(1.1) 

where H = H(q, p) is the Hamilton function, ai are  generalized non-potential forces, which depend 
on the m-dimensional control vector u e U, the canonical variables (q, p) belong to the region 
D C_..T*M of the cotangential manifold T'M, and time t varies in the range T C_ (0, ~).  The functions 
II, a ° and Oi are  regarded as functions of their arguments, differentiated a sufficient number of times• 
In a number of problems, constraining sets U containing controls that are fairly large (in absolute value) 
controls are considered. In these cases the system will be said to possess sufficiently large control 
resources. Note that the time derivative of the function V(q, p), specified in solutions of system (1.1), 
is defined by the :formula. 

We will consider the controllability of system (1.1) in the classical formulation as a property of the 
system th~it ensures the existence of an admissible control, under the action of which the system transfers 
from an arbitrarily specified initial state to an arbitrarily specified final state of motion. For the 
investigation, we will use a method [1] based on the idea of an oriented manifold (OM). 

Definition 1. T h e  mani fo ld  K C D will be  said to  be  o r i en t ed  with respec t  to  sys tem (1.1) in reg ion  
D if  it  co inc ides  wi th  its posi t ive  orb i t  (K = Or+K)  o r  its negat ive  orb i t  (K --- Or-K) .  T h e  posi t ive orb i t  
O r + K  of  the  set  K is a set  o f  po in ts  a t t a inab le  f rom set  K a long t ra jec tor ies  o f  sys tem (1.1), and  the 
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negative orbit Or-K is a set of points from which set K can be reached. 
The necessary and sufficient conditions of controllability of system (1.1) are given by the following 

theorem [1]. 

Theorem 1. System (1.1) is controllable in region D when, and only when, there are no system-oriented 
manifolds N with a smooth boundary such that N ,  0, D. 

The condition of orientability means that, for OMs of complete dimensionality k = 2n, the vector aH/ap 
and covector (--OH/aq + Q) of system (1.1) at points of its boundary are in one direction from it (outward 
or inward), while for OMs incomplete dimensionality k < 2n the coordinates t~, p of the phase velocity 
belong to a cotangential manifold at its internal points and are in one direction from it at points of its 
boundary. Using this property, Theorem 1 enables us to reduce the investigation of the controllability of 
system (1.1) to a study of the solvability of a system of linear first order partial differential equation. 

Theorem 2. Mechanical system (1.1) is controllable in region D when, and only when, the system partial 
differential equations. 

k op ) j~=o L ° j ( q ' p ' u ) V j + G ( q ' p ' u )  

2n-I 
T. 2tij(q,p,u)V i,_ i = ! ..... 2 n -  1 

)=1 

(1.2) 

where G(q ,p ,  u)  is a constant-sign function in the region D × U, and the function kij(q,P, u)  does not 
contain singularities in the region D x U, does not have any vanishing solutions Vj(q, p) in region D. 

The necessity follows from the fact that, specifying the smooth boundary of OMs by controls 
V/(q, p) = 0(i = 0, 1, ..., 2n - 1), using the property of orientability, we obtain that the functions Vi 
satisfy Eqs (1.2). 

The proof of sufficiency reduces to the fact that the existence of a solution Vi(q, p) (i = 0, 
1, . . . ,  2n - 1) leads to the presence of an OM, the boundary of which is defined by the equations V/(q, 

p) = 0 (i = 0, 1, ..., 2n - 1), which, by virtue of Theorem 1, leads to non-controllability. 

2. SYSTEMS THAT ARE L I N E A R  IN C O N T R O L  

Theorem 2 reduces the solution of the problem of the controllability of system (1.1) to a study of the 
existence of a solution of system of differential equations (1.2). The latter problem is complicated by 
the fact that these equations contain the control parameter u, which can take any values from the set 
U. When system (1.1) depends linearly on the control 

/1 i a H  a H  ., 
= ap i , pi = - a q  i + f .  + .,.=, ~. gi.~ u ,  i=  ! ..... n (2.1) 

instead of Eqs (1.2) it is possible to obtain a system of differential equations containing no control. 
Here, fi(q, P) and g~(q, p )  are assumed to be functions of their arguments, differentiated a sufficient 
number of times. Furthermore, we assume that the set U contains a zero as an internal point. 

Theorem 3. Mechanical system (2.1) with sufficiently large control resources is controllable in region 
D when, and only when, the system of partial differential equations 

[Vo, H] + f ,  = ~,ojVj+Go(q,p) 
-= 

[Vi,H]*~, -~-p) ~ Z ,  ijV j, i=1 . . . . .  2 n - I  
(2.2) 

ar t )  2.-, 
Z ~,,,.,Vj, /=0,1 ..... 2 n - i ,  s = l  ..... m gs,'-~ff) = 
j=0'= 

f = ( f l  ..... f , ) r ,  g.,=(gls ..... g~,.)r 
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where G0(q, p )  is a constant-sign function in region D, while the functions kq and kljs contain no 
singularities in region D, and ~,t0~ = 0 for I > 0, has no vanishing solutions Vy(q, p ) i n  region D. 

Proof The necessity will be proved by reasoning from contradiction. In spite of the assertion of the 
theorem, let system (2.2) have the solution Vi = Vi(q,p) (i = 0 . . . . .  2n - 1). We multiply the last group 
of Eqs (2.2) by u s ~tnd sum over s from 1 to m. We add sum obtained for l = 0 to the first equation, and 
for l = 1 . . . . .  2n - 1 to the first group of Eqs (2.2). As a result we obtain that the functions V,. determine 
the solutions of  system (1.2), in which 

Q.i = f,. + ~_. gisu s, Xij(q,p,u)=~,ij + ~ 2Li#u '~, G(q,p,u)=Go(q,p)  
s=l .'~=1 

On the basis of Theorem 2, we conclude that system (2.1) is not controllable, which contradicts the 
condition and proves the necessity. 

We shall also prove the sufficiency by reasoning from contradiction. In spite of the assertion of the theorem, 
let system (2.2) be uncontrollable in region D. Then, on the basis of Theorem 2, system (1.2) for 

Q i = ~ +  ~, g~.,u ~ 
s=l 

has the solution V i = V/(q,p) (j" = 0, 1 . . . .  , a,  tz ~< 2n - 1), and here Vj and also ~0 and G are functions 
of their arguments, differentiated a sufficient number of times. Assuming in Eqs (1.2) that u s -- 0, we 
establish that the given functions Vy satisfy the first equation and the first group of Eqs (2.2) in which 
Xij = Xij(q,p, 0) and Go(q,p) = G(q,p, 0). Since the region U can be selected to be fairly large, a point 
u0 ~ U exists in which the constant-sign function G(q, p, u) takes an extremum. In the vicinity of the 
point u0, the expansions 

m . . . .  

G(q,p,u) = G(q,p, uo)+ ~,Gij( q, P, Uo)(U' -u~)(u ~ -u~ +...~,ii(q,p,u)) = Xq(q,p, uo)+ 
U=I 

I | l  

+ Y. Xij.,. (q, P, Uo)(U "~ .," - U O ) + . . .  
S = I  

(2.3) 

hold, where the unwritten terms are higher-order infinitesimals. 
Substituting ex~pressions (2.3) into Eqs (1.2), we obtain 

m • a v o ~  
[ V ° ' H ] +  f +s~ E ~.oj(q,p, uo)Vj-G(q,p, uo)+ 

~P) 1=o 

+ 2 g , . ( U s - U ; ) ,  - ~, ~.Oj,(q,p, Uo)(Us-U~))Vj+ . . . .  0 
.'~=1 j=O s=l 

[E,H]+ I"+ ~. g,u~,-~_ J- TXo(q,p, uo)Vj+lX g.,(u" 
, = ,  o v  j -"°"-El) 

-'~. ~ ~,iys(q,p, uo)(U"-ug)Vj + .... 0 
j---I s=l 

(2.4) 

Since Eqs (1.21) are satisfied at the point u = u0 and the variables u s are arbitrary, it follows from 
Eqs (2.3) that 

g.~,--q--I = ~. 2~O.~(q,p, uo)V j, /=0,1  ..... a 
op ) j=o 

where Xt0~ = 0 for I > 0, i.e. the functions Vj also satisfy the last group o f E q s  (2.2). Hence, we have 
established that ,;ystem (2.2) allows if the solution Vj = Vj(q, p), which contradicts the condition and 
proves the theorem. 
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Remark 1. The condition of Theorem 3 concerning the possibility of the control modulus taking sufficiently large 
values is extremely important, and its non-satisfaction can lead to uneontroUability of the system. Thus, for the 
system xi = ~.ixi + u (x ~ R n, u E R 1) with the condition 3. i # ~.j, the Kalman criterion is satisfied, and the given 
system is controllable. However, with the constraints 

~.i> 1,x~ D = {x: Ilxll < R , R  > 2}, UE U =  { u : - i  < u  < 1} 

the system is uncontrollable in region D (with u e U) in view of the obvious estimate xi > 0 for xi > 1 and any u 
U. On the other hand, this condition is not necessary; a Kalman controllable system k = Ax + Bu, when the 

eigenvalues of matrixA are pure imaginary, is controllable in any sphere Ilxll < R for controls Ilu [I < e [3] as 
small as desired. 

3. T H E  CASE OF C O M P L E T E  C O N T R O L  (m = n) 

For the case of complete control, when the dimensionality of the control matches the dimensionality 
of the coordinate space m = n, by using Theorem 3 and the kinematic properties of holonomic systems 
it is possible to obtain simple sufficient conditions of controllability. To illustrate this we present the 
following theorem which stems from the results of [2]. 

Theorem 4. Let m = n and det ]]gis 1] ~ 0 in region D. Then, with sufficiently large control resources, 
system (2.1) is controllable in region D. 

Proof. On the basis of Theorem 3 it is sufficient to show that, when the conditions of Theorem 4 are 
satisfied, system (2.2) has no vanishing solutions. If  such a solution exists, then from the last group of 
Eqs (2.2) it follows [4, 5] that systems of equations q = 0, b = gs(q, P) (s = 1 . . . . .  n) have a common 
invariant manifold M defined by the equations V/= 0 (j = 0, 1 . . . .  , a, a ~< 2n - 1). Since at each point 
of the manifold M the normal to it is orthogonal to the velocity vectors [0, gs(q, p)] and the condition 
det IIg. II # 0 is satisfied, we obtain OVj./3p = 0, i.e. Vy = Vy(q). The remaining equations of system (2.2) 
take the form 

Gt 
[Vo.H]= Y. ~.ojVj+Go(q,p), IVy, H]=  ~, kijV j, i = l  ..... ot (3.1) 

j=O j--I 

From Eqs (3.1) it follows that the manifold M is the OM for the Hamiltonian system with the function 
H(q, p). By virtue of the property V/=  V/(q), the manifold M is a cylinder, the generator of which is 
identical with momentum space. Therefore,  at points (go, P) e M for anyp  from the region of values, 
the normal to the manifold M is the same. From the definition of holonomic mechanical systems it follows 
that, at each point q of configuration space, the velocity vectors t~ can take any direction. By virtue of  
the mutual uniqueness of  the mapping t~ ---> p, it follows from this that, when p varies in any 
neighbourhood as small as desired, the corresponding velocities t~ can take any direction. Therefore,  
for the normal n to manifold M at any point (qo, Po) there are points (qo, P) E Mwith  the same normal 
n at which the projection of the velocity q = OH/Op onto the normal n takes both positive and negative 
values. This means that the manifold M cannot be oriented, and Eqs (3.1), and consequently Eqs (2.2), 
have no vanishing solutions in region D. 

Remark 2. This theorem can be proved by different methods. Thus, in [2] it is proved using discontinuous controls 
of special form on the basis of the theory of differential equations with a discontinuous right-hand side. Provided 
m = n, system (2.1) is a system of"triangular form", and it can be shown that, when the conditions of the theorem 
are satisfied, sufficient conditions of controllability [4, 6] are satisfied for it. The proof of this theorem by the inverse- 
problem method is of interest. Taking account of the uniqueness of the mapping q = arp, it is sufficient to obtain 
an expression for the control vector in terms of the coordinate vector and its derivatives. Differentiating the first 
group of Eqs (2.1) with respect to time, we find 

. . . .  +Jj + ~ q j  = 2, ~ g j s u ' .  l,...,n 
/li j=I~[~PiOPj[ ~)qj ~ OPiOqj J ,.j=l OPiOpj i= 

(3.2) 

Here, in place of the momentapi, we have substituted their expressions in terms of q, q, as given by the formulae 
Pi = OL/Oqi. By virtue of the fact that 
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~apiapj I 

and by the condition detllg~ll ¢ 0, the system of equations (3.2) is uniquely solvable for the controls us = us(q, gl, 
~). For the specified boundary values (q0, P0), (ql, P0 ,  from the first group of Eqs (2.1) we find t~0, ql. Selecting 
an arbitrary function ~/(t), twice continuously differentiable, and satisfying the conditions ~/(t0) = q0, ~/(tl) = ql, 
~(t0) = t~0, t)(h) = th, we determine the functions fis(t) = us(gl(t), fl(t), ~l(t)) which provide a solution to the boundary 
value problem in question. Note that, besides the proof of controllability, this also provides a proof of the functional 
controllability with respect q e C 2, i.e. the possibility of realizing for system (2.1), any function q(t) twice continuously 
differentiable (by selecting the appropriate control u(t)). 

The condition detllg0[I ~ 0 is not necessary. When it is violated the system may be both controllable and 
uncontrollable, which is indicated by the following two examples, in the solution of which dimensionless variables 
are used. 

Example 1. Consider the controllability of the system 

ql =Pl ,  /~! =qlP2 +qlul, q2 =P2, P2 =q2Pl +u2 (3.3) 

with the constraints; 

ql 2 + q ~ + p l  2 + p ~ < r  2, Ul 2+u  2 < r  2 (3.4) 

The sufficient condition of Theorem 4 is not satisfied, since the determinant det Ilgij II = ql can vanish in region 
D. However, it can be verified that system (3.3) has an invariant manifold defined by the relations ql = 0 and 
Pl --- 0, i.e. the functions V0 = ql and V1 - Pl are solutions of system (2.2) with Go = 0. By Theorems 2 and 3, this 
indicates the uncontrollability of system (3.3) in the region examined. 

Example 2. Consider the controllability of the system 

q l=P l ,  pl =qlp2 +ul, q2 = P2, p2 =q2Pl +qlu2 (3.5) 

with constraints (3.4) 
We write Eqs (2.2) for system (3.5), assuming that gl = (0, 0, 1, 0) andg2 = (0, 0, 0, ql), we obtain 

3 3 
FVi= ~, XojVj+Go, FVI= Y k#Vj, i=I ,2,3 

j=o j=l  

av~ av~ av~ av~ "~ 
F = p! ~ - -  + P2 ~ + ql P2 ~ -  + q2 Pl "k"---/ (3.6) oql oq2 opl oP2 ) 

3 
at,,av~ ~_EoX~j;~ ' ap2a--~v~- 3 = _ _  ql -/__~0 ~'/j2Vj, i=0,1,2,3 

As in the previous example, we have det [[ q# II = ql. If  det II q# II * 0, system (3.6) has no vanishing solutions. It 
remains to be verified whether system (3.6) allows of a solution V0, V1, V2, V3 containing the function V1 = ql. 
Substituting function I"1 into the second group of Eqs (3.6), we find 

3 
p, = Exuv  j 

j=l 

It follows that there is one further function V2 = Pl and ~q2 = 1, and the remaining ones Xlj = 0. Substituting the 
function V2 into the third group of Eqs (3.6), we obtain 

3 
i :  5". x2j; vj 

j :O 

It follows that system (3.6) has no vanishing solutions, and system (3.5) is controllable. 
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4. THE CONTROLLABILITY OF CLASSES OF MECHANICAL SYSTEMS 

To simplify the solution of the problem of the controllability of a specific mechanical system under 
conditions of incomplete information concerning the active forces and parameters, the concept of the 
controllability of classes of mechanical systems was introduced in [2]. The condition of controllability 
of a class guarantees retention of this property when there are variations of the parameters and forces, 
i.e. it has a robust nature, which makes it possible to reveal general laws that are free from the individual 
singularities of the specific system. The class of systems in [2] is described by the sets U, Do of values 
of the controls and generalized forces and by numbers b0, ~0, 2~1 characterizing the kinetic energy and 
a matrix for the control vector in the equations of motion. The simplest class was singled out, described 
by the equations 

d ~T ~T 
=ui(t), luiJ<~h i, i=!  ..... rt (4.1) 

dt 3ili ~qi 

for which it was established that it is completely controllable when, and only when, 

h 0 = min h i > 0 
I ~ i ~ n  

Analysing the properties of systems of this class, we shall point out two of the most remarkable: 
(1) systems of this class are controllable by arbitrarily small controls; (2) the property of controllability 
does not depend on the properties of the system (on the expression for the kinetic energy), i.e. the 
constraints on the class are minimal. 

Further, extensions of this class, where considered in [2] when the right-hand sides of Eqs (4.1) have 
the form 

(a) Qi(q,~l,t) + U i 

(b) Qi(q,q,t)+ ~ bik(q, il, t)uk(t) 
k = l  

The conditions of controllability of these classes include a condition ensuring the choice of a control 
that not only compensates for the generalized forces but also guarantees a resource ensuring complete 
controllability, and for classes b, the further condition 

det II b+(q, il, t)114 0, (q,q) e R 2", t ~> t o (4.2) 

Comparing these classes with the simplest, we note that they no longer possess the property of 
controllability by small controls, and for class b the additional condition (4.2) arises. Loss of the first 
property is extremely important from the viewpoint of applications, and at the same time condition 
(4.2) is not so constraining if the problem of describing the classes is examined in certain spaces, in the 
simplest case in the space of parameters which specify the kinetic energy and generalized forces. Then 
the simplest class is described by the manifold Q(q, q, t) = 0, and condition (4.2) isolates a certain region 
(full measure) in which the parameters can vary arbitrarily. 

An examination of classes a and b together with the simplest class leads to the formulation of the 
problem of finding the classes of controllable mechanical systems for which retention of the property 
of controllability is guaranteed when of the parameters vary on certain manifolds (for the simplest class 
this is the manifold Q = 0, and for class b it is the region isolated by condition (4.2). The solution of 
this problem can be obtained using the theory of the control of systems with control constraints. Here, 
the conditions of controllability provide a description of the classes (in the corresponding spaces). Thus, 
for litiear mechanical systems and more common linear dynamical systems, a description of the class 
of systems that are controllable by controls as small as desired is given by the following theorem [3]. 

Theorem 5. The system 

x = A x + b u ,  x E R  n, u E R  I, lul<u 0 

is controllable when, and only when, det (b, Ab  . . . . .  An-lb) ~ 0 and all the eigenvalues of the matrixA are 
pure imaginary (including zero eigenvalues), and here the value of u0 can be taken to be as small as desired. 
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For systems in which the control is linear, this problem can be solved using Theorem 3, and for non- 
linear systems of general form it can be solved using Theorem 2. Note that, in this formulation of the 
problem of the corttrollability of classes of mechanical systems, the condition that the dimensionality 
of the control should be identical with the dimensionality of the coordinate space (m = n) ceases to 
be a necessary condition of controllability, and the properties of controllability "proper" acquire a 
decisive value, making it possible to act in a desired way on the multidimensional system by a control 
of smaller dimensionality, even a one-dimensional control, as in Theorem 5. 

5. THE C O N T R O L L A B I L I T Y  OF D E C O M P O S A B L E  SYSTEMS 

The non-linearity, large dimensionality and relation between different degrees of freedom that are 
characteristic of the mechanical systems describing modern technical plant make it considerably more 
difficult to study their dynamic properties, including their controllability. In developing methods of 
controllability, ideas of decomposition have proved to be extremely effective. These basically reduce 
the investigation of the high-order system to an investigation of several lower-order systems by dividing 
the initial system into independent subsystems or by introducing a certain hierarchical structure. 

One of the implementations of the first approach for mechanical systems is the principle of 
decomposition [7]. In the theory of the control of dynamical systems, the problem of decomposition 
has been well studiLed in a general formulation, a fairly complete presentation of which is given in [8]. 
Analysing controlled mechanical systems from these viewpoints, it is possible to note their initial state 
of decomposition iin relation to the controls. The equations of motion of mechanical systems can be 
naturally divided irtto kinematic or kinetic (not containing a control) and dynamic equations, depending 
on the controls. For canonical variables, these are respectively the first and second group of equations 
(1.1). The equations in Lagrangian variables have an even simpler structure, namely, 

ili = v  i, l i i  = F i ( t , q , v ,  u),  i = ! . . . . .  n (5.1) 

In order to simplify the investigation, other groups of variables are often introduced in mechanics, retaining the 
division of the equations into dynamic and kinematic equations. A classical example is provided by the Euler-Poisson 
equations of motion of a rigid body with fixed point in a gravitational field, where the projections of the angular 
velocity vector of the body onto moving axes are adopted as the dynamic variables, and either the direction cosines 
of the vertical or the Euler angles can be adopted as kinematic variables. 

A more extensive decomposition arises when the dynamic equations do not depend on the kinematic 
variables, and a hierarchical structure emerges. A study of the controllability of the entire system begins 
with the solution of the simpler problem of the controllability of its dynamical subsystem, which is often 
of important independent value. The question of the relation between the properties of controllability 
of the entire system and its dynamical subsystem is of theoretical and practical interest. The complete 
solution of this problem can be obtained for linear scleronomous systems of the type (5.1) using the 
following theorem. 

T h e o r e m  6. T h e  mechanical system 

Cl = v ,  t i  = A v + Bu (q ,o  ) ~ R 2", u ~ R"  (5.2) 

is controllable when, and only when, m = n and det B ,  0. 

Proof .  The nece:~sity will be proved by reasoning from contradiction. In spite of the assertion, either 
m < n or det B -'= 0. A non-zero vector c then exists orthogonal to the vectors bl, ..., bin, where 
B = (bl . . . .  , bin). For the linear function V = (~ -Aq)rc,  the equality 17 = 0 is satisfied. This means 
that the function Vis an integral of system (5.2) and, consequently, system (5.2) is uncontrollable, which 
contradicts the condition and proves the necessity. 

Sufficiency follows from the fact that, when the conditions of the theorem are satisfied, system (5.2) 
has a "triangular form" and the sufficient conditions of controllability [4, 6] are satisfied for it. Use can 
also be made of Kalman's criterion, which for system (5.2) leads to the condition. 

U o ii: ,,n  otB,2 0 det B A B  
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When the conditions of Theorem 6 are satisfied, its dynamical subsystem is controllable. However, 
the controllability of the dynamical subsystem alone is insufficient for the controllability of the entire 
system: the conditions of Theorem 6 must be satisfied. The requirement of complete control rn = n is 
very severe and not obligatory for linear subsystems with general kinematic equations arising in the 
theory of perturbations of mechanical systems when studying vibrations, problems of stability, etc., i.e. 
for subsystems of the form. 

il = Cq + Dp, f~ = Ap  + Bu,  (q, p )  ~ R 2a, u ~ R "  (5.3) 

As an example, we will consider two mechanical systems with two degrees of freedom, using 
dimensionless variables. 

Example 3. Consider a mechanical system with two degrees of freedom with generalized coordinates ql, q2, 
generalized velocities vl, ~2, kinetic energy T = (~2 + x)2)/2 and generalized i~Orees Q1 = u2, 
Q2 = u, where u is the control. We write the equations of motion in the form 

ill =Ul,  q2 =u2 ,  U'l =u2 ,  U'2 = u  (5.4) 

The dynamical subsystem is controllable. The entire system is uncontrollable since m = 1 < 2 = n. The reason 
for uncontrollability is the presence of the integral V = ~1 - q2 = const. Note that the rank of the matrix of 
controllability of the entire system is equal to 3, and on integral manifolds the entire system is controllable. 

Example 4. Consider a mechanical system with two degrees of freedom with generalized coordinates ql, q2, kinetic 
energy T = (t~ 2 + t~2)/2 + 2q2t~ 2 and generalized forces Q1 = q2 + q2, Q2 = --q2 + u, where u is the control. In 
Lagrangian variables, the dynamical subsystem depends on the generalized coordinate q2 and does not have the 
form (5.2). In canonical variables 

ql ,q2 .Pl = ~ L l  ~ill = ill .P2 = OLl Oil2 = t12 +q2 

the equations of motion 

ql = Pl ,  q2 = P2 - q 2 ,  Pl = P 2 ,  P2 = u  (5.5) 

have the form (5.3), differing from Eqs (5.2) in the structure of the kinematic equations. Applying Kalman's criterion 
to system (5.5), we can verify that it is controllable. The dynamical subsystems of systems (5.4) and (5.5) are identical 
and are controllable, and, unlike uncontrollable system (5.4), a change in the kinematic equations has led to the 
controllability of the entire system (5.5). 

The examples considered indicate the importance of formulating the problem of the relationship 
between the properties of  the controllability of  the mechanical system and of its dynamical subsystem. 
For linear systems in Lagrangian variables, this problem is solved entirely on the basis of Theorem 6. 
To investigate linear systems in arbitrary variables, it is necessary to investigate Eqs (5.3). It is of interest 
to formulate this problem for systems with linear control and for non-linear systems of general form. 
An interesting example of a non-linear mechanical system that has linear control and has a decomposed 
dynamical subsystem is provided by the problem of control of the orientation of a rigid body by means 
of a reaction force, examined in the following section. 

6. C O N T R O L  OF T H E  O R I E N T A T I O N  OF A R I G I D  BO D Y  

Many aspects of the motion of a rigid body about its centre of mass under the action of  a reaction force 
are investigated using a model of an absolutely rigid body ignoring the change in mass. The equations 
of motion relative to a certain inertial system of coordinates have the form 

(0 = -(to I sin ~ + co 2 cos ~)ctg O + to 3 

=(to I sin tp+ to 2 costp)/sinO, El = co I cosq~- to 2 sin~ 

~t = atto2o3 +otlu (123) (a I = (A 2 - A3) I  A I (123)) 

(6.1) 

where tp, ~ and 0 are the Euler angles, (01, (o2 and (o3 are the projections of the angular velocity vector 
onto the principal central axes, A1, A2 and A 3 are the principal central moments of inertia of the body, 
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6 = (61, 62, 63) is the unit vector of the direction of the moment of the reaction force, u is the control, 
characterizing the magnitude of the moment of the reaction force, and the symbol (123) denotes that 
the remaining unwritten relations are obtained from the written relation by cyclic permutation of the 
subscripts. 

Equations (6.1) can be split into kinematic equations for the Euler angles and dynamic equations with 
the moments of the forces. Therefore, it is natural to begin our investigation of system (6.1) with an 
analysis of the dynamic equations, and then investigate the entire system and analyse the question of 
the relation between the properties of controllability of the entire system and of its dynamical subsystem. 
The controllability of the dynamic subsystem was investigated in [1, 4, 9], where its controllability was 
established provided the parameters did not satisfy the conditions of one of the following groups 

Oq =Or 2 =0; 6 t =0, aj =0; a162-a36~  = 0  (123) (6.2) 

We shall obtain llhe necessary conditions of controllability of the entire system (6.1), using Theorem 
3 for the single function V0 = Vand Go = 0. Equations (2.2) for system (6.1) have the form 

Gt =: ~l PJ + ~2 P2 + [33 P3 + [°)3 - (tot sin 9 + t.o 2 cos 9) ctg 0]q t + 

0 t sin tp + to 2 cos(p 
+ - q2 + (tot cos 9 - t-°2 sin tp)q3 - ~'t V = 0 

sin 0 

G2 :: ott Pt + 62P2 + ~3P3 - ~.2 V = 0 

av av av 
i = 1,2,3; q l=o~ p, q2=~-~~ , q 3 = ~  "; [~1 =alto2(°3 Pi = a(oi , 

,,23, / 
(6.3) 

To obtain the conditions of solvability of this system, we shall supplement it with Jacobi brackets. 
We arrive at the following system 

G i =0, i = 1 . . . . .  6 (6.4) 

Here 

G3 =[G2,GI]=~tPt  +~2P2 +~3P3 +[°t3 -(61 sin tP+ ~2 cos(p)ctg0]ql + 

+ ct I sin(p+62 cosq) q2 +(al  cos~o- a2 sin (P)q3 - k 3  V 
sin0 

G4 = [(72, G3 ] = 111Pt + r12P2 + 113P3 - L4V 

G5 = [G4,GI ] = ~lPl +~2P2 +~3P3 + 

+ 2[a36 t 62 - 63(at62 sin tp + a261 cos ~)etg 0] qt + 

+ 263 a 62 sin 9 + a20q cos9 q2 + 263(at62 cos9 - a261 sin 9)q3 - ~'5 V 
" sin0 

G 6 =[G4,G 3] = xlp t +x2P2 +x3p 3 -~.6 V 

~1i =a1(62~3 +63{-°2), 111 =2al6263 (123) 

~t = 2al°q(a26.a°)3 +a3ct2t~2), ×t = 2at61(a2 a2 +a36~) (123) 

and ~'1, "" ,  ~6 are certain functions of the variable to1, o)2, (03, (p, ¥, and 0. The determinant of system 
(6.4), regarded as a system of linear algebraic equations in Pi, qi (i --- 1, 2, 3), is equal to 

A = 8/st82~3W/sin 0, W = 61/5t~ t + ~2/52ta)2 + a3/53o) 3 

/51 = a2 a2 - a3a 2 (123) 
(6.5) 

If A ~ 0, then, as shown in [4], system (6.4), together with system (6.3), either has no solution or has 
a solution of exponential form which dose not vanish. It remains to study the case A = 0. Determinant 
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(6.5) is zero when the parameters  ai, o~. (1 = 1, 2, 3) satisfy condit ions (6.2), and on a linear manifold 

W = 0 (6.6) 

When  condit ions (6.2) are satisfied, system (6.3) obviously has a solution since in this case the 
dynamical subsystem of  system (6.1) is uncontrollable.  To satisfy (6.6) it is necessary for the function 
W to be a solution of  system (6.3). By substituting it into (6.3), we can verify that  the second equat ion 
is satisfied identically of  k2 = 0, while the first equat ion acquires the form 

0W OW 0W 
al(o2oj 3 ~ + a2(o3(.01 - -  + a3tl)lO2 ~ - -  ~,l W 

OtOi Or02 OOJ 3 
(6.7) 

Using the Levi-Civita theorem [5], Eqs (6.7) indicates that l inear manifold (6.6) is an invariant manifold 
of  the system of  equat ions 

tb I = atto2to 3 (123) (6.8) 

which clescribes the mot ion  of  a rigid body by inertia. F rom the dynamics of  a rigid body it is well known 
that Eqs (6.8) admit of  linear invariant manifolds only of  the following form 

~,.f~-2 + to2.f~-i = 0 (123) 

The  requi rement  that Eqs (6.9) and (6.6) should be identical leads to condit ions imposed on the 
parameters  

a~ot~ - a 2 ~ i  2 = 0 (123) 

and have already been singled out  by equalities (6.2). 
Thus, the necessary condit ions of  controllability of  the ent ire  system (6.1) are identical with the 

necessary (and sufficient) condit ions of  controllability of  its dynamical  subsystem, i.e. they are satisfied 
for all values of  the parameters  a i and ~i in addit ion to those satisfying condit ions (6.2). 
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